Шкала электромагнитных волн кто придумал
Перейти к содержимому

Шкала электромагнитных волн кто придумал

  • автор:

Шкала электромагнитных излучений

Все виды электромагнитных волн распространяются в вакууме с одинаковой скоростью. Но их частота и длина различаются.

Принцип построения

Электромагнитные излучения принято делить на частотные диапазоны в порядке возрастания длины волны, от гамма-лучей к радиоволнам. Длина волны обратно пропорциональна частоте и вычисляется через скорость света:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Границы между выделенными диапазонами условны, поэтому они могут перекрываться. Радио- и гамма-волны, расположенные по краям спектра, в принципе не имеют четких границ.

Кто создал шкалу

Электромагнитное взаимодействие между предметами подчиняется электромагнитной теории, базирующейся на уравнениях шотландского физика Джеймса Кларка Максвелла. В 1864 году тот построил теорию электромагнитных излучений, математически доказав существование колебаний в электрических и магнитных полях, скорость распространения которых совпадает со скоростью света. Так как до этого Максвелл занимался теорией цвета и цветным зрением, он описал видимый свет, как волны, соответствующие семи цветам радуги.

Максвелл высчитал длину волны каждого из основных цветов и предположил, что у спектра электромагнитных волн нет границ, они могут быть бесконечно малыми и бесконечно огромными. Невидимые инфракрасные и ультрафиолетовые лучи на тот момент уже были известны.

В 1888 году немецкий физик Генрих Герц открыл радиоволны и экспериментально доказал, что их природа тождественна природе световых волн, различается только длина волны. В 1895 году были открыты рентгеновские лучи. В 1900 году, исследуя радий, Поль Виллар обнаружил гамма-лучи.

Что образует шкалу

Диапазон по длине волн

Вдоль шкалы слева направо увеличивается длина волны. Каждая метка отличается от соседней в десять раз.

Диапазоны ЭМ излучения

Диапазон по энергии квантов

Кроме частоты и длины, электромагнитная волна имеет и третью характеристику — энергию кванта (или фотона). Она пропорциональна частоте и высчитывается по формуле:

где \(h\) — постоянная Планка, а греческая буква «ню» — частота.

Диапазон по энергии квантов

Виды ЭМ волн

Видимая зона

Видимый свет состоит из лучей семи основных цветов: красного, оранжевого, желтого, зеленого, голубого, синего, фиолетового. У каждого цвета собственная длина волны.

Невозможно указать точные границы диапазона видимого излучения, так как уменьшение чувствительности при отдалении от точки максимума в зеленой части спектра происходит постепенно. Лучи света обычно имеют сложный спектральный состав, в который могут входить ультрафиолетовые и инфракрасные волны. Монохроматические излучения, смешиваясь, образуют оттенки, не относящиеся к семи основным цветам, например, розовый или бежевый.

Невидимая зона

Существование невидимых тепловых лучей предсказал французский физик Пьер Прево еще в 1791 году. В 1800 году они были обнаружены экспериментально при изучении температуры разных цветов и названы инфракрасными. Нижнюю часть инфракрасного спектра, наиболее удаленную от видимых лучей, называют микроволнами. Средняя часть спектра — излучение горячих тел, в том числе тела человека. Самые короткие инфракрасные волны схожи по своему поведению с лучами видимого света и могут быть обнаружены чувствительным фотооборудованием.

В 1801 году открыли лучи вне видимого спектра, схожие с фиолетовыми. Их фотоны обладают таким количеством энергии, что способны ионизировать атомы и тем самым вызывать химические процессы. Короткие ультрафиолетовые волны близки к рентгеновским и могут повреждать живые ткани. Волны средней длины не относятся к ионизирующим, но при длительном воздействии разрушают химические связи, например, вызывают рак кожи.

Рентгеновское излучение занимает диапазон между ультрафиолетовым и гамма-излучением: длина волн от нескольких атомных диаметров до нескольких сот диаметров атомного ядра. Излучение возникает при столкновении электронов и поверхности анода на большой скорости, когда атомы анода меняют внутреннюю структуру. Частота зависит от материала анода; излучение делят на мягкое, с большей длиной волны и меньшей частотой, и жесткое. Рентгеновские лучи могут проникать сквозь тело человека, поэтому используются в медицинской диагностике.

При распаде радиоактивных веществ ядра их атомов испускают гамма-излучение, которое также обозначают греческой буквой \gamma . Его частота определяется разностью энергий двух состояний ядра и рассчитывается по формуле:

где \(h\) — постоянная Планка.

Это самые короткие волны. Они состоят из фотонов сверхвысоких энергий и так интенсивно воздействуют на живые клетки, что могут останавливать их атипичное деление при онкологии.

Радиоволны почти не задерживаются атмосферой, поэтому их удобно использовать для передачи закодированной информации. Они значительно различаются по длине: от нескольких сантиметров до тысяч километров. Длинные волны отражаются от ионосферы планеты и таким образом могут огибать земной шар. Также их используют для изучения астрономических объектов.

Источники волн

Можно разделить источники на два типа — микроскопические и макроскопические. Если заряд, колеблющийся с определенной частотой, перемещается внутри атомов и молекул, источник считается микроскопическим. Искусственно созданные источники, в которых колеблются электроны проводников — макроскопические.

Где применяется шкала ЭМ излучений

Радиолюбителям и пользователям раций важно знать допустимые для переговоров диапазоны, а также полосы военных и аварийных частот, чтобы не занимать чужие выделенные каналы. Собирая собственный приемник или передатчик, нужно заранее определиться, на какие частоты он будет настроен, чтобы использовать соответствующие детали.

Космическое инфракрасное излучение регистрируют с помощью специальных телескопов, чтобы на основании полученных данных определять классы, возраст звезд, химический состав их атмосфер. Например, протозвезды, еще не достигшие главной последовательности на диаграмме Герцшпрунга-Расселла, интенсивно излучают энергию в инфракрасном спектре, но при этом полностью лишены теплового излучения.

Применение инфракрасной аппаратуры космического базирования позволяет решать практические задачи геологического картирования, изучать вулканы и геотермальные источники. Метеорологи, измеряя собственное инфракрасное излучение облачных образований, изучают свойства разных слоев атмосферы.

С помощью шкалы энергий излучения можно идентифицировать гамма-радиоактивные вещества, измеряя с помощью специальной установки поглощение испускаемых ими волн. УФ-спектроскопия и малоугловое рассеяние рентгеновских лучей применяются в прикладной химии для идентификации органических соединений.

Практическое применение шкалы в решении задач

Задача 1

На какой из аварийных частот судну лучше всего передавать сигнал бедствия, если оно находится в 230 км от берега?

Решение

Сверяемся с таблицей:

Аварийные частоты по морским районам Морской район

Переводим километры в морские мили (nm). 1 км = 0,54 nm, соответственно, 230 км = 124,19 nm. Судно находится в районе А2, в зоне действия береговой ПВ радиостанции, так что подавать сигналы бедствия должно по относящимся к ней частотам.

Задача 2

Изомерные 1,3-пентадиен и 1,4-пентадиен имеют в УФ-спектрах максимумы поглощения при 165 нм (спектр А) и 225 нм (спектр Б). Какому веществу принадлежит каждый спектр?

Решение

Двойные связи в 1,3-пентадиене (СН2=СН-СН=СН-СН3) сопряжены, а в 1,4-пентадиене (СН2=СН-СН2-СН=CH2) изолированы. Сопряженные системы поглощают свет в более длинноволновой области, чем системы с изолированными двойными связями. Поэтому спектр Б принадлежит 1,3-пентадиену, а спектр А — 1,4-пентадиену.

Насколько полезной была для вас статья?

В 1888 году Генрих Герц экспериментально подтвердил электромагнитную теорию света Джеймса Максвелла

Генрих Герц - автор: Robert Krewaldt, Kaiserplatz 16, Bonn - Cabinetphotograph, Kabinettfotografie, Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=26781773

В 1888г. вышла фундаментальная работа Герца «Об электродинамических волнах в воздухе и их отражении». Физики всего мира начали воспроизводить опыты Герца и повсюду говорили и писали о «волнах Герца». Заключительная работа цикла «О лучах электрической силы», доложенная Герцем 13 декабря 1888 г. на заседании Берлинской академии наук, произвела подлинную сенсацию. Этот год считается годом открытия электромагнитных волн и экспериментального подтверждения теории Максвелла.

Для проведения опытов Герц придумал и сконструировал излучатель электромагнитных волн, названный впоследствии «вибратором Герца». Он представлял собой два соосных медных стержня диаметром 5 мм и длиной по 1.3 м; на концах стержней были насажены по одному латунному маленькому (диаметром 3 см) шарику и по одной большой цинковой сфере или полусфере (диаметром 30 см). Между маленькими шариками оставался зазор 7. 7,5 мм — искровой промежуток. К медным стержням вблизи маленьких шариков были прикреплены обмотки катушки Румкорфа — преобразователя постоянного тока низкого напряжения в переменный ток высокого напряжения. При импульсах постоянного тока, вследствие действия прерывателя, в гальванической цепи вторичной обмотки катушки между шариками роскакивали искры и в окружающую среду излучались электромагнитные волны. Перемещением больших сфер (или пластин) вдоль стержней регулировались индуктивность и емкость цепи, определяющие частоты колебаний (и соответственно длины волн).

Для приема излучаемых волн, Герц использовал резонатор, представляющий собой проволочное незамкнутое кольцо диаметром 70 см, с латунными шариками на концах (такими же, как и у «передатчика»). Изменяя размеры и положение резонатора, Герц настраивал его на частоту колебаний вибратора. В результате, между шариками приемника проскакивали искры в тот же самый момент, когда они появлялись шариками вибратора. Искры были очень слабые, поэтому наблюдать за ними приходилось в темноте.

Схема опыта Герца, источник — http://library.brstu.ru/static/bd/istor_ing_dela/personalia/hertz.pdf

Благодаря своим опытам Герц пришёл к следующим выводам:
1. Волны Максвелла «синхронны» (справедливость теории Максвелла, что скорость распространения радиоволн равна скорости света).
2. Можно передавать энергию электрического и магнитного поля без проводов.

Памятник на могиле Герца,
автор: Joern M, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12667795Б

История открытия электромагнитных волн

Открытие электромагнитных волн — замечательный пример взаимодействия эксперимента и теории. На нем видно, как физика объединила, казалось бы, абсолютно разнородные свойства — электричество и магнетизм, — обнаружив в них различные стороны одного и того же физического явления — электромагнитного взаимодействия. На сегодня это одно из четырех известных фундаментальных физических взаимодействий, к числу которых также относятся сильное и слабое ядерные взаимодействия и гравитация. Уже построена теория электрослабого взаимодействия, которая с единых позиций описывает электромагнитные и слабые ядерные силы. Имеется и следующая объединяющая теория — квантовая хромодинамика — которая охватывает электрослабое и сильное взаимодействия, но ее точность несколько ниже. Описать все фундаментальные взаимодействия с единых позиций пока не удается, хотя в этом направлении ведутся интенсивные исследования в рамках таких направлений физики, как теория струн и квантовая гравитация.

Электромагнитные волны были предсказаны теоретически великим английским физиком Джеймсом Кларком Максвеллом (вероятно, впервые в 1862 году в работе «О физических силовых линиях», хотя подробное описание теории вышло в 1867 году). Он прилежно и с огромным уважением пытался перевести на строгий математический язык немного наивные картинки Майкла Фарадея, описывающие электрические и магнитные явления, а также результаты других ученых. Упорядочив одинаковым образом все электрические и магнитные явления, Максвелл обнаружил ряд противоречий и отсутствие симметрии. Согласно закону Фарадея переменные магнитные поля порождают электрические поля. Но не было известно, порождают ли переменные электрические поля — магнитные. Избавиться от противоречия и восстановить симметрию электрического и магнитного полей Максвеллу удалось, введя в уравнения дополнительный член, который описывал возникновение магнитного поля при изменении электрического. К тому времени благодаря опытам Эрстеда уже было известно, что постоянный ток создает вокруг проводника постоянное магнитное поле. Новый член описывал другой источник магнитного поля, но его можно было представить как некий воображаемый электрический ток, который Максвелл назвал током смещения, чтобы отличить от обычного тока в проводниках и электролитах — тока проводимости. В итоге получилось, что переменные магнитные поля порождают электрические поля, а переменные электрические — магнитные. И тогда Максвелл понял, что в такой связке колеблющиеся электрическое и магнитное поля могут отрываться от порождающих их проводников и двигаться через вакуум с определенной, но очень большой скоростью. Он вычислил эту скорость, и она оказалась около трехсот тысяч километров в секунду.

Потрясенный полученным результатом, Максвелл пишет Уильяму Томсону (лорду Кельвину, который, в частности, ввел абсолютную шкалу температур): «Скорость поперечных волновых колебаний в нашей гипотетической среде, вычисленная из электромагнитных опытов Кольрауша и Вебера, столь точно совпадает со скоростью света, вычисленной из оптических опытов Физо, что мы едва ли может отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений». И далее в письме: «Я получил свои уравнения, живя в провинции и не подозревая о близости найденной мной скорости распространения магнитных эффектов к скорости света, поэтому я думаю, что у меня есть все основания считать магнитную и светоносную среды как одну и ту же среду. »

Уравнения Максвелла далеко выходят за рамки школьного курса физики, но они так красивы и лаконичны, что их стоит разместить на видном месте в кабинете физики, ведь большинство значимых для человека явлений природы удается описать с помощью всего нескольких строчек этих уравнений. Так сжимается информация, когда объединяются ранее разнородные факты. Вот один из видов уравнений Максвелла в дифференциальном представлении. Полюбуйтесь.

E = 4πρ Закон Кулона
B = 0& магнитные заряды не существуют в природе
[∇E] = –1/cBt) закон Фарадея
[∇B] = (4π/c)j + (1/c)(δEt) Закон Ампера, с током смещения Максвелла (второй член правой части)
F = q(E+ [(v/c)×B]) Сила Лоренца

Хочется подчеркнуть, что из расчетов Максвелла получалось обескураживающее следствие: колебания электрического и магнитного полей — поперечные (что он сам все время подчеркивал). А поперечные колебания распространяются только в твердых телах, но не в жидкостях и газах. К тому времени было надежно измерено, что скорость поперечных колебаний в твердых телах (попросту скорость звука) тем выше, чем, грубо говоря, тверже среда (чем больше модуль Юнга и меньше плотность) и может достигать нескольких километров в секунду. Скорость поперечной электромагнитной волны была почти в сто тысяч раз выше, чем скорость звука в твердых телах. А надо заметить, что характеристика жесткости входит в уравнение скорости звука в твердом теле под корнем. Получалось, что среда, через которую идут электромагнитные волны (и свет), имеет чудовищные характеристики упругости. Возник крайне тяжелый вопрос: «Как же через такую твердую среду движутся другие тела и не чувствуют ее?» Гипотетическую среду назвали — эфиром, приписав ему одновременно странные и, вообще говоря, взаимоисключающие свойства — огромную упругость и необычайную легкость.

Работы Максвелла вызвали шок среди ученых-современников. Сам Фарадей с удивлением писал: «Сначала я даже испугался, когда увидел такую математическую силу, примененную к вопросу, но потом удивился, видя, что вопрос выдерживает это столь хорошо». Несмотря на то, что взгляды Максвелла опрокидывали все известные на то время представления о распространении поперечных волн и о волнах вообще, прозорливые ученые понимали, что совпадение скорости света и электромагнитных волн — фундаментальный результат, который говорит, что именно здесь физику ожидает основной прорыв.

К сожалению, Максвелл умер рано и не дожил до надежного экспериментального подтверждения своих расчетов. Международное научное мнение изменилось в результате опытов Генриха Герца, который через 20 лет (1886–89) в серии экспериментов продемонстрировал генерацию и прием электромагнитных волн. Герц не только в тиши лаборатории получил правильный результат, но страстно и бескомпромиссно защищал взгляды Максвелла. Причем он не ограничился экспериментальным доказательством существование электромагнитных волн, но и исследовал их основные свойства (отражение от зеркал, преломление в призмах, дифракцию, интерференцию и т. д.), показав полную тождественность электромагнитных волн со светом.

Любопытно, что за семь лет до Герца, в 1879 году английский физик Дэвид Эдвард Юз (Хьюз — D. E. Hughes) тоже продемонстрировал перед другими крупными учеными (среди них был также блестящий физик и математик Георг-Габриель Стокс) эффект распространения электромагнитных волн в воздухе. В результате обсуждений ученые пришли к выводу, что видят явление электромагнитной индукции Фарадея. Юз расстроился, не поверил самому себе и опубликовал результаты лишь в 1899 году, когда теория Максвелла-Герца стала общепринятой. Этот пример говорит, что в науке настойчивое распространение и пропаганда полученных результатов имеет часто не меньшее значение, чем сам научный результат.

Генрих Герц так подытожил результаты своих экспериментов: «Описанные эксперименты, как, по крайне мере, кажется мне, устраняют сомнения в тождественности света, теплового излучения и электродинамического волнового движения».

Физика. 11 класс

§ 12. Электромагнитные волны и их свойства. Шкала электромагнитных волн

Практически до начала ХХ в. человеческая цивилизация не знала о существовании электромагнитных волн, использование свойств которых до неузнаваемости изменило быт современных людей. Как тепловое излучение Солнца достигает Земли через холодные просторы космоса? Конечна ли скорость света? Как осуществляется связь с космонавтами на околоземной орбите?

Впервые гипотезу о существовании электромагнитных волн высказал в 1864 г. английский физик Джеймс Максвелл. В своих работах он показал, что источниками электрического поля могут быть как электрические заряды, так и магнитные поля, изменяющиеся во времени.

В свою очередь магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическим током), либо переменными электрическими полями.

Изменение индукции магнитного поля с течением времени вызывает появление в окружающем пространстве вихревого электрического поля. Силовые линии этого поля замкнуты и охватывают линии индукции магнитного поля, и напряженность в любой точке пространства перпендикулярна индукции магнитного поля
(рис. 72, а).

Максвелл предположил, что любое изменение напряженности вихревого электрического поля сопровождается возникновением переменного магнитного поля (рис. 72, б). Далее этот процесс может повторяться «до бесконечности», поскольку поля смогут попеременно воспроизводить друг друга даже в вакууме.

Таким образом, в вакууме возникает система изменяющихся и взаимно поддерживающих друг друга электрических и магнитных полей, захватывающих все большие и большие области пространства (рис. 73).
Совокупность связанных друг с другом периодически изменяющихся электрического и магнитного полей называют переменным электромагнитным полем. Согласно теории Максвелла электромагнитное поле распространяется в пространстве с конечной скоростью.
Рассмотрим подробнее процесс образования электромагнитного поля в пространстве, окружающем проводник.
Пусть в проводнике возбуждены электромагнитные колебания, в результате чего сила электрического тока в нем непрерывно меняется. Поскольку сила тока связана со скоростью движения свободных зарядов в проводнике, то скорость движения последних также будет непрерывно изменяться с течением времени. Это говорит о том, что свободные заряды внутри проводника будут двигаться с ускорением.
Согласно теории Максвелла при ускоренном движении свободных зарядов в проводнике в пространстве вокруг него создается переменное магнитное поле, которое порождает переменное вихревое электрическое поле. Последнее, в свою очередь, вновь вызывает появление переменного магнитного поля уже на большем расстоянии от заряда и т. д. Таким образом, в пространстве вокруг проводника образуются взаимосвязанные электрические и магнитные поля, которые распространяются с течением времени в виде волны.

Электромагнитное поле, распространяющееся в вакууме или в какой-либо среде с конечной скоростью, называется электромагнитной волной (рис. 74).
Электромагнитные волны являются поперечными. В них направления колебаний векторов напряженности электрического поля и индукции магнитного поля волны происходят в плоскости, перпендикулярной направлению распространения волны

Подобно упругим механическим волнам электромагнитные волны испытывают отражение от препятствий, преломление на границах сред. Но в отличие от упругих волн электромагнитные волны могут распространяться и в вакууме.

Частота электромагнитных волн совпадает с частотой колебаний излучающих частиц. Максимальное значение ускорения при гармонических колебаниях пропорционально квадрату частоты колебаний . Так как излучают только ускоренно движущиеся заряды, то модуль напряженности электрического поля и модуль индукции магнитного поля пропорциональны модулю ускорения E ~ α, B ~ α , то E ~ ν 2 . Тогда интенсивность излучаемой электромагнитной волны пропорциональна четвертой степени частоты I ~ ~ ν 4 .

Таким образом, для получения интенсивных электромагнитных волн от некоторого источника необходимо создать в нем колебания излучающих заряженных частиц достаточно высокой частоты.

Одним из важнейших результатов теории Максвелла было теоретическое определение модуля скорости распространения электромагнитных волн (света). Согласно этой теории модуль скорости распространения с электромагнитной волны в вакууме связан с электрической по­стоянной и магнитной постоянной следующим соотношением

Скорость распространения электромагнитных волн в вакууме является максимально (предельно) достижимой величиной. В любом веществе скорость их распространения меньше с и зависит от его электрических и магнитных свойств.
Совпадение скорости электромагнитных волн со скоростью света дало возможность Максвеллу предположить, что свет имеет электромагнитную природу. Благодаря этому произошло объединение в одно учение оптики и электромагнетизма.
Электромагнитные волны были экспериментально открыты немецким физиком Генрихом Герцем в 1887 г. Для их генерации он использовал специальное устройство (рис. 75, а), впоследствии названное вибратором Герца.
Герц исследовал излучаемое вибратором электромагнитное поле. В воздушном зазоре между шарами при переменном напряжении, достигающем значения пробоя воздуха, происходил искровой разряд. При этом в вибраторе возникали электромагнитные колебания высокой частоты. Индикатором электромагнитных волн, возникающих в опытах Герца, служила искра, образующаяся в приемном контуре (рис. 75, б). Размеры приемного контура (в форме прямоугольного контура или кольца) выбирались таким образом, чтобы собственная частота возникающих в нем колебаний была равна частоте излучаемых волн.
Изменяя положение приемного контура по отношению к вибратору и наблюдая появление в нем искры, Герц определял наличие поля в различных точках пространства. Таким образом, Герц экспериментально доказал существование электромагнитных волн.
В своих экспериментах, проведенных в 1887— 1891 гг., Герц сумел не только убедительно доказать существование электромагнитных волн, но и установить их основные свойства.

Перечислим основные свойства электромагнитных волн:
• распространяются не только в различных средах, но и вакууме;
• в вакууме распространяются со скоростью ;
• отражаются и преломляются на границах раздела сред;
• являются поперечными.

Исследования по передаче информации электромагнитными волнами, проведенные русским ученым Александром Степановичем Поповым, показали, что для радиосвязи можно использовать колебательный контур. Закрытый контур излучает слабо, так как электрическое поле сосредоточено в основном между обкладками конденсатора, а магнитное — в катушке, т. е. поля пространственно разделены. Такая система с сосредоточенными параметрами практически не излучает электромагнитные волны.

Проследим за изменениями в системе при увеличении расстояния d между обкладками конденсатора, при уменьшении площади S обкладок конденсатора и при уменьшении числа N витков катушки.

Так как при этом электроемкость конденсатора и индуктивность катушки уменьшаются, то собственная частота колебаний контура увеличится. Соответственно, увеличится и интенсивность излучения, которая при прочих равных условиях .

Таким образом, для эффективного излучения контур необходимо «открыть», раздвинув обкладки конденсатора, т. е. создать условия «ухода» поля в пространство (рис. 75-1, а). Если заменить катушку прямым проводом, то частота ω увеличится еще больше. В результате приходим к открытому колебательному контуру — это прямой провод
(рис. 75-1, б).

Однако в таком виде его невозможно использовать на практике, так как мощность излучения и в этом случае невелика. Интенсивное излучение начинается при достижении частот порядка сотен тысяч герц. Поэтому в действительности контур состоит из катушки, конденсатора и длинного провода — антенны (рис. 75-1, в). Один конец провода соединен с землей (заземлен), второй — поднят над поверхностью Земли (см. рис. 75-1, в).

Длина антенны изготовляется кратной половине длины волны, так как в этом случае она настроена в резонанс с генератором колебаний, что обеспечивает оптимальные условия для излучения и приема электромагнитных волн. Вынужденные колебания высокой частоты в антенне создают в окружающем пространстве электромагнитное поле, и электромагнитные волны распространяются от антенны (рис. 75-2).

Спектр электромагнитного излучения удобно изображать в виде шкалы электромагнитных волн, приведенной на рисунке 76.

Свойства электромагнитных волн очень сильно зависят от их частоты. Излучение электронов, обусловленное их движением в проводниках, позволяет генерировать электромагнитные волны с частотой до 10 12 Гц. Для генерации излучений с частотой выше 10 12 Гц используют излучение атомов. Верхний предел частот, которые могут генерировать атомные системы, составляет 10 30 Гц.

Излучения более высоких частот (гамма-излучение) испускаются атомными ядрами.

Классификация электромагнитных волн в зависимости от частот (длин волн) приведена в таблице 7

Приемники
излучения (применение)

Генераторы пере­мен­ного тока, электрические машины

Передача элект­ри­ческой энер­гии, обработка металлов

Солнце, электро­лампы, лазеры, све­то­диоды

Кожа человека (загар, лечение заболеваний ко­жи), уничто­же­ние бактерий, сигнализация

Бетатроны, солнеч­ная корона, небес­ные тела, рентгенов­ские трубки

Ионизация, счетчик Гейгера-Мюллера, рент­гено­графия, радио­логия, обна­ружение подделок произ­ведений искус­ства

Космическое излу­чение, радиоактив­ные распады, бетатрон, циклотрон

В настоящее время электромагнитные волны находят широкое применение в науке и технике в таких процессах и явлениях, как:
• плавка и закалка металлов в электротехнической промышленности, изготовление постоянных магнитов (низкочастотные волны);
• телевидение, радиосвязь, радиолокация (радиоволны);
• мобильная связь, радиолокация (микроволны);
• сварка, резка, плавка металлов лазерами, приборы ночного видения (инфракрасное излучение);
• освещение, голография, лазеры (видимое излучение);
• люминесценция в газоразрядных лампах, лазеры (ультрафиолетовое излучение);
• рентгенотерапия, рентгеноструктурный анализ, лазеры (рентгеновское излучение);
• дефектоскопия, диагностика и терапия в медицине, исследование внутренней структуры атомов, военное дело (гамма-излучение).

7 мая 1895 г. русский ученый Александр Степанович Попов на заседании Русского физико-химического общества в Санкт — Петербурге сообщил о возможности приема электромагнитных сигналов на расстоянии. А уже 18 декабря 1897 г. он передал на расстояние 250 м первую в мире радиограмму из двух слов «Heinrich Hertz» (Генрих Герц) в честь первого в мире человека, наблюдавшего электромагнитные волны.

В 1901 г . итальянский инженер Г. Маркони впервые осуществил радиосвязь через Атлантический океан. В 1909 г. он получил Нобелевскую премию за развитие радиотехники и распространение радио как средства связи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *