Что такое удельный заряд электрона
Перейти к содержимому

Что такое удельный заряд электрона

  • автор:

Удельный заряд электрона e/m

Электроны ускоряются в электрическом поле и входят в магнитное поле под прямым углом к ​​направлению движения. Удельный заряд электрона определяется по ускоряющему напряжению, напряженности магнитного поля и радиусу орбиты электрона.

Задания

Определение удельного заряда электрона (е / м 0 ) от пути электронного пучка в скрещенных электрическом и магнитном полях переменной силы.

Что вы можете узнать о

  • Катодные лучи
  • Сила Лоренца
  • Электрон в скрещенных полях
  • Масса электрона
  • Заряд электрона

Преимущества

  • Узкополосная неоновая трубка для идеальной видимости электронного пучка
  • Высокая точность и простота выполнения измерений благодаря встроенной конструкции люминесцентной лестницы
  • Подходит для демонстрационных и лабораторных курсов
  • Большие катушки Гельмгольца для создания однородного магнитного поля большого объема. Может быть использовано в разных экспериментах
  • Камера наблюдения позволяет проводить эксперимент, несмотря на дневной свет

Определение удельного заряда электрона методом Чайлда-Ленгмюра (магнетрон)

Удельным зарядом частицы называется физическая величина, равная отношению заряда частицы к её массе — q/m. Соответственно, удельный заряд электрона, это физическая величина, равная отношению заряда электрона к его массе — e/m. Удельный заряд определяют, изучая движение частиц в электрическом и магнитном полях. Одним из методов нахождения удельного заряда электрона может служить метод Чайлда-Ленгмюра. Он основан на измерении вольтамперной характеристики вакуумного диода, то есть зависимости анодного тока диода Ia от напряжения между катодом и анодом Ua. Электрический ток переносится электронами, испускаемыми накалённым катодом. При малых напряжениях Ua анодный ток пропорционален Ua3/2. Эту зависимость называют законом «трёх вторых» или законом Чайлда-Ленгмюра. Целью настоящей работы является изучение закона Чайлда-Ленгмюра и определение удельного заряда электрона.

ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА

  1. Цель работы: определение удельного заряда электрона по его движению в скрещенных магнитном и электрическом полях..
  2. Теоретические основы. Характер движения в траектории заряженной частицы в электростатическом и магнитном полях зависит не от заряда q или массы т в отдельности, а лишь от отношения q/m. Величина q/m называется удельным зарядом данной частицы. Чем меньше q/m (т.е. чем меньше заряд и больше масса частицы), тем меньше изменяется по величине и направлению скорость частицы в данном поле. Измеряя скорости и траектории частиц, движущихся в электрическом и магнитном полях, можно определить величину и знак их удельного заряда. Если известен заряд частицы, то, измерив q/m, можно найти ее массу и определить, что это за частица. Этот принцип лежит в основе масс-спектрометрического анализа.

Величина удельного заряда может быть измерена различными методами. В данной работе используется «метод магнетрона», в котором используется отклонение магнитным полем электрона, движущегося ускоренно под действием электрического поля, перпендикулярного магнитному. На заряженную частицу, движущуюся со скоростью v в однородном (одинаковом во всех точках пространства) магнитном поле с индукцией В, действует сила Лоренца: . (1) Величина этой силы зависит от угла β между векторами и и равна . (2) В случае, когда , сила Лоренца равна . (3) Взаимная ориентация векторов , и показала для случая положительного заряда (q > 0) на рис. 1а, а для отрицательного (q< 0) – на рис. 1б. При движении частицы в постоянном (не зависящем от времени) магнитном поле скорость ее движения может изменяться лишь по направлению, так как сила Лоренца перпендикулярна скорости и работы не совершает. Изменение скорости по величине или изменение кинетической энергии обусловлено действием электрического поля. Поэтому можно записать, что изменение кинетической энергии равно: , (4) где U – разность потенциалов электрического поля, – начальная скорость электронов. Для случая = 0 получаем или . (5) Магнетрон (рис. 2) представляет собой электровакуумный диод с цилиндрической конфигурацией электродов, помещенный в магнитное поле соленоида. Электрическое поле между электродами К и А служит для создания анодного тока, а магнитное поле соленоида С – для изменения величины этого тока. В отсутствие магнитного поля (В = 0) электроны, вылетающие из подогреваемого катода К, движутся к аноду А прямо по радиусам действия электрического поля, обусловленного разностью потенциалов U, приложенной между анодом и катодом (рис. 3а). При включении постоянного тока IC в соленоиде его магнитное поле, направленное перпендикулярно скорости (рис. 2), начнет действовать на электроны и отклонять их. Под действием отклоняющей силы Лоренца траектория электронов станет криволинейной (рис. 3б). aKбAKAraвKAг Рис. 3 С ростом тока IC в соленоиде, а значит и с ростом магнитного поля В, траектории электронов все больше искривляются под действием возрастающей силы Лоренца. При некотором критическом значении IC = ICкр (B = Bкр) траектории искривляются так, что касаются только поверхности анода (рис. 3в). При IC >ICкр (B >Bкр) радиус кривизны траектории уменьшается, и электроны не достигают анода (рис. 3г). Анодный ток должен прекратиться. Такая зависимость анодного тока от тока соленоида (или индукции магнитного поля, созданного током соленоида) показана на рис. 4 штриховой линией. Однако реальная зависимость имеет не ступенчатый, а плавный спад (сплошная линия на рис. 4). Это связано с тем, что электроны имеют различные скорости и при одном и том же значении В (значении IC) на них действуют разные силы Лоренца, следовательно, они имеют различные траектории. Если считать, что соленоид создает однородное магнитное поле, перпендикулярное скорости, то траектории электронов в таком поле будут представлять собой окружности с различными радиусами R. Сила Лоренца является центростремительной, поэтому можно записать , (6) откуда . (7) Приравняв (7) и (5), получим . (8) Предположим, что скорости всех электронов одинаковы. Тогда критическое значение тока соленоида (критическое значение индукции магнитного поля) для всех электронов будет одинаковым. При этом траектории всех электронов будут представлять собой окружности с диаметром, равным расстоянию между катодом и анодом 2R=ra. Если известно число витков соленоида N, то индукцию магнитного поля можно вычислить по величине питающего соленоид постоянного тока: , (9) где l – длина соленоида, μ0 – магнитная постоянная. Следовательно, удельный заряд электрона можно рассчитать по формуле . (10) Таким образом, характерная особенность метода заключается в том, что изменением магнитного поля достигается наперед заданная траектория электронов, при которой они не могут попасть на анод лампы, хотя на них действует электрическое поле. Следовательно, опыт сводится к снятию так называемой сбросовой характеристики лампы, т.е. к снятию зависимости Ia от IC (или В). Резкий спад этой кривой соответствует искомым критическим условиям работы магнетрона. 3. Экспериментальная часть. 3.1. Краткое описание экспериментальной установки и оборудования. На рис. 4 приведен внешний вид и схема экспериментальной установки для определения удельного заряда электрона. 3.2. Методика проведения измерений.

  1. включить установку;
  2. выполнить начальную подготовку установки: переключатель диапазона измерений амперметра 4 установить в положение 10А, а переключатель амперметра 5 – в положение 200A; ручку потенциометра 6 повернуть в крайнее левое положение, при котором значение силы тока в цепи соленоида (показания амперметра 4) будет минимальным; включить накал лампы с помощью кнопки 3 (должна загореться красная лампочка над кнопкой);
  3. увеличивая ток в соленоиде реостатом 6 снять зависимость анодного тока (показания амперметра 5) от величины тока соленоида . Ток соленоида изменять с шагом 0,1A. Значения , занести в табл. 1;
  4. после завершения опыта нажать кнопку 3 и выключить накал.
Таблица 1
, мА
, мкА

Параметры установки: радиус анода rа = 3мм, плотность витков катушки соленоида = 6000 витков/м, длина катушки соленоида. 3.3. Обработка результатов эксперимента. 3.3.1. Построить по данным табл. 1 график зависимости . 3.3.2. Определить значение критического тока в соленоиде L, соответствующее точке на графике , где анодный ток уменьшается наиболее резко. 3.3.3. Вычислить по формуле (4) удельный заряд электрона. 3.3.4. По отношению к табличному значению вычислить относительную ошибку измерения величины e/m. Здесь R1 – реостат, мА – миллиамперметр, L – соленоид, D – диод, мкА – микроамперметр, V – вольтметр, R2 – потенциометр. Рис. 4.

Определение удельного заряда электрона

Цель работы: определить удельный заряд электрона по движению электрона в диоде, помещенном в магнитном поле.

Оборудование: плата с диодом и катушкой, блок питания, вольтметр, миллиамперметр, амперметр.

Удельный заряд – это характеристика элементарных частиц, равная отношению заряда к массе. В некоторых опытах измерение одновременно заряда и массы невозможно, но можно определить удельный заряд, величина которого позволяет установить частицу. Удельный заряд электрона можно определить, например, методом цилиндрического магнетрона.

Магнетрон – это электронная лампа, в которой движением электронов управляет магнитное поле. Магнетрон применяется в радиотехнике для генерации сверхвысокочастотных колебаний. В работе в качестве магнетрона применяется электронная лампа – диод 1Ц 11П, который помещен в магнитное поле катушки с током.

Электроны, испускаемые нагреваемым катодом вследствие явления термоэлектронной эмиссии, движутся к аноду под действием электрического поля. Напряженность электрического поля максимальна у катода, а в остальном пространстве электрическое поле слабое. Поэтому электроны разгоняются около катода, а дальше движутся почти с постоянной скоростью в радиальном направлении к аноду. Скорость электронов V можно определить по закону сохранения энергии. Потенциальная энергия электрона в электрическом поле при движении от катода к аноду превращается в кинетическую энергию:

, (1)

где е, m – заряд и масса электрона; U – разность потенциалов между катодом и анодом диода.

Если включить магнитное поле, направленное параллельно оси диода, значит, перпендикулярно вектору скорости, то на электроны начинает действовать сила Лоренца

, (2)

где B – индукция магнитного поля.

Направление силы можно определить по правилу левой руки: если четыре пальца вытянуть по скорости, а силовые линии входят в ладонь, то отогнутый большой палец покажет направление силы для положительного заряда. Для отрицательного электрона – наоборот. Сила Лоренца перпендикулярна вектору скорости, следовательно, является центростремительной силой. Поэтому траектория электрона является дугой окружности. По второму закону Ньютона произведение массы электрона на центростремительное ускорение равно силе Лоренца: Отсюда радиус кривизны траектории равен

. (3)

Как видно, с ростом индукции магнитного поля радиус кривизны дуги уменьшается (рис. 1). При некотором значении индукции магнитного поля, названного критическим Вкр, орбита электрона превращается в окружность, которая касается анода. Радиус критической орбиты равен половине радиуса анода R=r/2. Если еще увеличить магнитное поле, то радиус орбиты еще уменьшится, и траектории электронов не будут касаться анода. Электроны перестанут попадать на анод, и сила анодного тока упадет до нуля.

На самом деле скорости электронов из-за взаимодействия между собой несколько различны, не все электроны движутся перпендикулярно катоду. Поэтому спад анодного тока будет постепенным: сначала не достигнут анода медленные электроны, потом более быстрые. Среднеквадратичной скорости, полученной из уравнения (1), соответствует участок наиболее крутого спада графика (рис. 2).

Решая совместно уравнение (1) и (3) с учетом R=r/2, получим формулу для расчета удельного заряда электрона

. (4)

Индукция магнитного поля в центре катушки может быть рассчитана по формуле

, (5)

где= 4∙10 -7 Г/м – магнитная постоянная; N – число витков катушки; Jкр – сила критического тока; l – длина катушки; β – угол между направлением на крайние витки из центра катушки и её осью.

Экспериментальное измерение удельного заряда электрона производится на лабораторной установке. Она состоит 1) из модуля с электронной лампой, помещенной внутрь катушки; 2) блока питания с амперметром для измерения силы тока в катушке и вольтметром, 3) миллиамперметра для измерения силы анодного тока (рис.3). Модуль и блок питания соединены кабелем.

1. Установить пределы измерения миллиамперметра 20 мА. Проверить подключение его к модулю к гнездам «РА». Индикатор должен показывать нуль.

2. Включить блок питания в сеть 220 В. Переменными резисторами установить анодное напряжение в интервале 12–120 В, минимальную силу тока через катушку (0,5 А). После нагрева катода в анодной цепи должен появиться ток, регистрируемый миллиамперметром.

Повторить измерения силы анодного тока, изменяя силу тока через катушку в пределах от 0,5 А до 1,5 А через каждые 0,1 А (одно деление шкалы амперметра). Результаты записать в табл. 1.

Сила тока в катушке Jкат, А

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *