Шим сигнал что это в автомобиле
Перейти к содержимому

Шим сигнал что это в автомобиле

  • автор:

Что такое ШИМ? Как широтно-импульсная модуляция используется в автоматизации?

Широтно-импульсная модуляция, или PWM (pulse-width modulation) — это тип цифрового сигнала, который модулируется для управления мощностью, скоростью и/или положением устройств в автоматизированной системе. PWM работает путем создания серии импульсов включения и выключения, которые подаются на устройство, при этом время включения или рабочий цикл импульса определяет количество подаваемой мощности.

Широтно-импульсная модуляцияДля чего используется?

Широтно-импульсная модуляция может быть использована для множества различных применений, включая управление двигателями, регулировку яркости освещения и даже управление источниками питания. Сигнал, промодулированный по ширине импульса, также может применяться для регулирования скорости двигателей или других устройств без изменения уровня напряжения. Таким образом, ШИМ становится идеальным вариантом для управления широким спектром устройств в системах автоматизации.

Принцип работы

Принцип работы ШИМ-сигнала заключается в посылке регулярных импульсов через определенные интервалы времени с изменяющимся рабочим циклом (процентное соотношение времени «включения»). В зависимости от рабочего цикла на управляемое устройство подается больше или меньше энергии, что влияет на его скорость или положение в автоматизированной системе. Путем увеличения или уменьшения определенных параметров, таких как частота, амплитуда и длительность импульсов, эти параметры могут быть настроены в соответствии с любыми требованиями приложения и обеспечивают точный контроль над выходом устройства без изменения уровня напряжения. Широтно-импульсная модуляция является важным и широко используемым методом управления выходной мощностью в различных приложениях. Она может быть реализована с помощью цифровых или аналоговых систем управления. В цифровом варианте сигналы генерируются с помощью программных алгоритмов, которые определяют ширину импульсов; в то время как в аналоговом PWM сигналы генерируются аппаратными компонентами, такими как транзисторы и конденсаторы, которые создают желаемую ширину импульсов без необходимости программирования. Оба метода имеют свои преимущества и недостатки, но при правильной реализации оба обеспечивают надежную работу с низким уровнем искажений.

Как работает ШИМ-контроллер в источнике питания?

ШИМ-контроллер работает путем переключения между различными уровнями электрического тока в зависимости от того, какой тип выхода требуется от системы, которую он питает — постоянный ток (DC) или переменный ток (AC). Контроллер регулирует это переключение с помощью широтно-импульсной модуляции, которая посылает регулярные импульсы через определенные промежутки времени с различными рабочими циклами (процентное время «включения»). Таким образом, различные уровни энергии могут подаваться к любому устройству, нуждающемуся в ней, сохраняя при этом стабильность системы в целом — т. е. без электрических скачков, которые могут повредить компоненты в дальнейшем.

Применение широтно-импульсной модуляции

Широтно-импульсная модуляция имеет множество вариаций по практическому использованию в различных отраслях промышленности, таких как авиация, автомобилестроение, робототехника и т. д. Некоторые возможности применения ШИМ-сигнала: управление скоростью и положением двигателя, регулирование яркости света, регулирование напряжения переменного и постоянного тока, обеспечение регулируемых профилей ускорения и замедления для двигателей, снижение электромагнитных помех, обеспечение точной передачи сигналов на большие расстояния и т. д.. Данный вид модуляции является бесценным инструментом, когда речь идет о системах автоматизации, требующих точного контроля над своими выходами без ущерба для стабильности в целом.

Применение широтно-импульсной модуляции в автоматизации

Применение широтно-импульсной модуляции в автоматизации

В системах автоматизации широтно-импульсная модуляция имеет множество преимуществ благодаря своей способности точно регулировать выходные параметры, не оказывая слишком сильного влияния на уровень напряжения. Управляющие ШИМ-сигналы широко используется во многих типах машин, включая роботизированные манипуляторы и роботизированные транспортные средства, а также бытовую технику, такую как стиральные машины, духовые шкафы и т. д.. Широтно-импульсная модуляция часто используется для получения синусоидальной формы волны. Она также может быть использована для регулирования работы инвертора. Помимо автоматической регулировки скорости и положения двигателя с помощью цифровых сигналов, они также обеспечивают регулируемые профили ускорения и замедления, что делает их идеальными при работе с хрупкими компонентами, где необходимо избегать резких изменений. Среди других преимуществ — снижение электромагнитных помех, повышение эффективности, усиление мер безопасности благодаря надежным методам обнаружения неисправностей, большая точность при передаче сигналов на большие расстояния и многое другое. В заключение следует отметить, что широтно-импульсная модуляция — это метод контроля и регулирования количества энергии, подаваемой на устройство, путем изменения ширины электрического импульса. Данный метод применяется в автоматизации и робототехнике, от управления двигателями до обеспечения точного контроля над системами освещения. PWM способен обеспечить точное регулирование при минимальных потерях энергии по сравнению с традиционными методами. В каталоге UnitMC вы найдете актуальные устройства и системы АСУ ТП. Подробную информацию и консультацию можно получить у наших сотрудников. Другие статьи Четыре устройства, использующие ШИМ для автоматизации

Как это — быть разработчиком ПО для автомобилей. Часть 2/2

В первой части серии мы приступили к разработке системы с сервоприводом, по крайней мере, мысленно. Я показал модель системы, на которой прекрасно видны все элементы и связи между ними.

image

Так как же соединяются части нашей системы? Благодаря протоколу FlexRay с электронным блоком управления (ECU) руль связан с датчиком положения. В отличие от обычного датчика, который регулирует напряжение в зависимости от температуры, умный датчик прекрасно взаимодействует напрямую с FlexRay.

В современных автомобилях, как правило, применяют два вида сетевых технологий: CAN и FlexRay. FlexRay — преемник CAN. Главное преимущество FlexRay в том, что можно точно определить момент передачи определенного сигнала, то есть протокол детерминирован. С помощью данной сети отдельные системы автомобиля, будь то тормозная, рулевая или другие блоки умных датчиков, непрерывно обмениваются необходимой информацией, что гарантирует бесперебойную работу авто.

Привычная схема запуска протокола FlexRay представляет собой процесс распределения времени по слотам, каждый из которых отвечает за отправку конкретных сигналов или показателей. Протокол задает свой ритм в ходе измерения физических параметров, отправки и обработки информации, а также регулирования работы датчиков. На диаграмме вы можете видеть повторяющиеся слоты FlexRay, благодаря которым данные передаются через шину.

image

Итак, датчик поворота руля должен отправить текущие показатели, когда на очереди соответствующий слот, ни секундой раньше или позже. Поскольку стандартное время отправки данных — 10 миллисекунд, на диаграмме выше пришлось сильно преувеличить возможное изменение положение руля. Да и водитель не сможет так быстро повернуть руль на 5°. Но для наглядности будем придерживаться этого примера.

В нашем микроконтроллере предусмотрен контроллер FlexRay, который принимает значения, периодически поступающие от датчика изменения положения руля. Как вы уже, наверное, догадались, программа, за работу которой отвечает процессор, тоже время от времени считывает и обрабатывает данные FlexRay. В данном случае под обработкой подразумевается определение положения зубчатой рейки (см. диаграмму выше) в зависимости от угла поворота руля. Математическая формула позволяет рассчитать подходящий режим работы двигателя, основанный на таком положении рейки. Причем здесь учитывается даже переключение передач.

image

Датчик положения – FlexRay — контроллер FlexRay – Процессор – ШИМ – Передача -Рулевая рейка

Вы, возможно, обратили внимание на незнакомый блок ШИМ. Это широтно-импульсная модуляция (ШИМ), позволяющая регулировать подачу тока на усилитель мощности – он же отвечает за питание двигателя. Но что такое ШИМ?

ШИМ — широтно-импульсная модуляция, отличный способ контроля за питанием различных электрических устройств. Другими словами, вы регулируете соотношение электричества и максимальной мощности, где 0% — отсутствие мощности и 100% — полная мощность, которую усилитель мощности обеспечивает двигателю. И, как всегда, более подробную информацию вы можете найти в Википедии:

image

Широтно-импульсная модуляция (ШИМ, англ. pulse-width modulation (PWM)) — процесс управления мощностью, подводимой к нагрузке, путём изменения скважности импульсов, при постоянной частоте. Различают аналоговую ШИМ и цифровую ШИМ, двоичную (двухуровневую) ШИМ и троичную (трёхуровневую) ШИМ.

Что происходит, когда водитель поворачивает руль? В определенный момент программное обеспечение, работающее на процессоре, получает информацию о новом положении руля и генерирует значение ШИМ, которое необходимо для запуска двигателя. Он, в свою очередь, перемещает рулевую рейку. В приведенном ниже примере водитель поворачивает руль на 5° (1). Датчик анализирует положение и посылает соответствующее значение по каналу FlexRay (2). Наш контроллер FlexRay получает данные (3), на их основе программа вычисляет подходящие показатели ШИМ (4) и задает их модулю ШИМ микроконтроллера (5). Модуль ШИМ регулирует поток электричества, который, в свою очередь задает мощность двигателя, определяемую усилителем мощности (6). Ток приводит в движение двигатель (7), а он перемещает рулевую рейку (8).

image

Датчик положения-FlexRay- контроллер FlexRay-Процессор-ШИМ-Передача-Рулевая рейка

Теперь вы знаете, что в предыдущем примере задействовано множество различных физических расчетов и элементов. Например, каким-то образом нужно вывести % ШИМ из градуса поворота руля. При этом важно учитывать текущее положение двигателя, потому что только так ясно, в каком направлении и с которой скоростью придется запустить двигатель. Но, к сожалению, это уже тема техники контроля, которую я не планировал освещать в рамках данной статьи.

Хотя по профессии я архитектор, разработка программного обеспечения доставляет мне огромное удовольствие, правда, естественно, больше всего мне нравится изучать архитектуру программ, поддерживающую функционирование системы в целом. Постепенно понимаешь, что архитектуре программного обеспечения приходится подстраиваться под ритм системы, и, возможно, было бы проще, если бы все сводилось к единому ритму. Но, нет, их несколько, причем они тесно взаимосвязаны. Так, например, ритм, соответствующий работе двигателя гораздо быстрее, чем ритм канала связи, благодаря чему при повороте руля движения плавные, без рывков.
Ритмичная архитектура программного обеспечения

Таким образом, среда программного обеспечения требует ритмичной обработки сигналов. Ритмичность предполагает наличие определенных циклов в работе программы. Вы когда-нибудь рассматривали архитектуру встроенного приложения? Если нет, не пугайтесь. Мы начинаем погружение.

Давайте проанализируем, как можно разделить нашу работающую на процессоре программу с картинки выше (см. иллюстрацию поворота руля). Если вы задумаетесь о задачах компонентов приложения, вы, очевидно, заметите, что мы имеем дело с 3 блоками: один для приема сигнала FlexRay, один для определения значения ШИМ на основе данных FlexRay и один для регулирования итоговой мощности ШИМ. На следующей схеме эти компоненты накладываются на микроконтроллер и вуа-ля, многоуровневая архитектура программного обеспечения готова.

image

«Com» используется для обозначения линий коммуникаций: этот элемент считывает сигнал контроллера FlexRay, входящего в состав микроконтроллера. Он также проверяет корректность передачи сигнала (например, посредством автосуммирования данных) и передает его остальным компонентам программы в виде показателей положения руля. Благодаря умному алгоритму, над созданием которого пришлось потрудиться не один год, элемент «Рулевое управление» принимает это значение и рассчитывает необходимые параметры ШИМ. Я не шучу, на разработку такого алгоритма может уйти море времени, потому что на карту поставлено управление автомобилем. А, значит, нужно учесть массу переменных, актуальных для тех или иных условий вождения. Но вернемся к многоуровневой архитектуре – остался ШИМ. Данный компонент ШИМ считывает полученную информацию о задает итоговую мощность ШИМ микроконтроллера.

И еще пару слов о концепции синхронизации. Новые данные поступают каждый раз, когда FlexRay получает соответствующий сигнал и если это раз в 10 миллисекунд, картина выглядит следующим образом:

image

Получение сигнала FlexRay приводит к запуску 3 взаимозависимых функций или компонентов. Затем определяется итоговая мощность ШИМ. Причем все это повторяется каждые 10 миллисекунд. Вот вам и ритм программного обеспечения.

Получив от программы итоговые значения, рассчитанные на основе исходных данных, получается такая диаграмма:

image

ШИМ рассчитывается и регулируется каждые 10 миллисекунд, а, значит, мы справились с первым этапом. Теперь можно разворачивать машину!

Как вы уже догадались, при таких результатах двигатель явно не будет работать плавно. Так ведь лучше:

image

А пока водителю явно не понравится дрожание передних колес при повороте руля. Придется дорабатывать архитектуру программы. Именно этому мы посвятим новый раздел серии. Надеюсь, вам понравились подготовленные материалы, и вы продолжите следить за новостями. Более того, я уверен, что теперь вы, с большего, разобрались с принципами построения архитектуры программного обеспечения для автомобилей. Как мы и говорили, она обусловлена средой или контекстом системы.

От переводчика:

Пока это второй и последний пост об автомобильном ПО от автора оригинального текста, но я буду внимательно следить за обновлениями в его блоге на Medium.

Спасибо за внимание.

  • ПО
  • разработка ПО
  • промышленное программирование
  • автомобили
  • программирование
  • Веб-разработка
  • Программирование
  • Промышленное программирование

Анализируйте ШИМ-сигналы

Анализ сигналов широтно-импульсной модуляции — RTM3004

Широтно-импульсная модуляция (ШИМ) традиционно используется для эффективного управления импульсными источниками питания на фиксированной частоте. Она применяется во многих типах источников питания в промышленных системах управления, силовой электронике и цифровой связи. Таким образом, ШИМ является широко распространенной технологией, используемой при проектировании цифро-аналоговых преобразователей, например, аудиоусилителей класса D, источников питания и инверторов постоянного тока, например, частотно-регулируемых приводов (ЧРП) двигателей постоянного тока и трехфазных электроприводов. В частности, разностные сигналы в мостах или многофазных электроприводах содержат биполярные сдвоенные импульсы, которые создают серьезные трудности для инженеров при разработке и тестировании.

Биполярный сигнал ШИМ, захваченный с помощью функции запуска по длительности по отрицательному импульсу (отображается в виде радужной осциллограммы; красный цвет указывает на частое возникновение)

Биполярный сигнал ШИМ, захваченный с помощью функции запуска по длительности по отрицательному импульсу (отображается в виде радужной осциллограммы; красный цвет указывает на частое возникновение)

Биполярный сигнал ШИМ, захваченный с помощью функции запуска по длительности по отрицательному импульсу (отображается в виде радужной осциллограммы; красный цвет указывает на частое возникновение)

Биполярный сигнал ШИМ, захваченный с помощью функции запуска по длительности по отрицательному импульсу (отображается в виде радужной осциллограммы; красный цвет указывает на частое возникновение)

Решение компании Rohde & Schwarz

Быстрый и простой способ получить общую картину ШИМ-сигнала — использовать функцию послесвечения осциллографа. Использование послесвечения может дать представление о типе присутствующих в сигнале импульсов. Кроме того, цветовая градация показывает области наибольшей активности сигнала.
Тем не менее, послесвечение и цветовая градация не обеспечивают детального анализа. Модулируется ли помимо длительности период? С какой частотой повторяется цикл модуляции? Сколько длительностей каждого значения встречается? Эти сведения необходимы при разработке различных электронных модулей, таких, например, как понижающие преобразователи, которые используются в источниках питания, схемах питания процессоров или зарядных устройствах.
Чтобы получить эту информацию, необходимо использовать методы более глубокого анализа.
Функция отслеживания осциллографов R&S®RTM3000 и R&S®RTA4000 способна демодулировать ШИМ-сигнал и извлекать основной сигнал модуляции в виде осциллограммы трека. Осциллограмма трека формируется из измеренных значений, расположенных в порядке времени их регистрации при захвате данных. Данный инструмент анализа отображает результаты любого заданного значения в зависимости от времени, обеспечивая четкое представление о том, как изменяются параметры ШИМ при измерении в течение относительно длительного периода времени. В результате появляется возможность оценить правильность отслеживания и степень линейности в ШИМ-регуляторах/контроллерах.
Образец в функции отслеживания осциллографов R&S®RTM3000 и R&S®RTA4000, интегрированный в блок матопераций, позволяет задавать верхний (однополярный сигнал) и нижний (биполярный сигнал) пороговые уровни для демодулируемого сигнала.

Блок матопераций содержит следующие стандартные функции анализа трека:

  • Трек: период (одно- и биполярный)
  • Трек: частота (одно- и биполярный)
  • Трек: длительность импульса (одно- и биполярный)
  • Трек: коэффициент заполнения (одно- и биполярный)

Доступные типы демодуляции выбираются под нужное применение

Доступные типы демодуляции выбираются под нужное применение

Доступные типы демодуляции выбираются под нужное применение

Широтно-импульсная модуляция

ШИМ или PWM (широтно-импульсная модуляция, по-английски pulse-width modulation) – это способ управления подачей мощности к нагрузке. Управление заключается в изменении длительности импульса при постоянной частоте следования импульсов. Широтно-импульсная модуляция бывает аналоговой, цифровой, двоичной и троичной.

Применение широтно-импульсной модуляции позволяет повысить КПД электрических преобразователей, особенно это касается импульсных преобразователей, составляющих сегодня основу вторичных источников питания различных электронных аппаратов. Обратноходовые и прямоходовые однотактные, двухтактные и полумостовые, а также мостовые импульсные преобразователи управляются сегодня с участием ШИМ, касается это и резонансных преобразователей.

Широтно-импульсная модуляция позволяет регулировать яркость подсветки жидкокристаллических дисплеев сотовых телефонов, смартфонов, ноутбуков. ШИМ реализована в сварочных аппаратах, в автомобильных инверторах, в зарядных устройствах и т. д. Любое зарядное устройство сегодня использует при своей работе ШИМ.

В качестве коммутационных элементов, в современных высокочастотных преобразователях, применяются биполярные и полевые транзисторы, работающие в ключевом режиме. Это значит, что часть периода транзистор полностью открыт, а часть периода — полностью закрыт.

И так как в переходных состояниях, длящихся лишь десятки наносекунд, выделяемая на ключе мощность мала, по сравнению с коммутируемой мощностью, то средняя мощность, выделяемая в виде тепла на ключе, в итоге оказывается незначительной. При этом в замкнутом состоянии сопротивление транзистора как ключа очень невелико, и падение на нем напряжения приближается к нулю.

В разомкнутом же состоянии проводимость транзистора близка к нулю, и ток через него практически не течет. Это позволяет создавать компактные преобразователи с высокой эффективностью, то есть с небольшими тепловыми потерями. А резонансные преобразователи с переключением в нуле тока ZCS (zero-current-switching) позволяют свести эти потери к минимуму.

В ШИМ-генераторах аналогового типа, управляющий сигнал формируется аналоговым компаратором, когда на инвертирующий вход компаратора, например, подается треугольный или пилообразный сигнал, а на неинвертирующий — модулирующий непрерывный сигнал.

Выходные импульсы получаются прямоугольными, частота их следования равна частоте пилы (или сигнала треугольной формы), а длительность положительной части импульса связана с временем, в течение которого уровень модулирующего постоянного сигнала, подаваемого на неинвертирующий вход компаратора, оказывается выше уровня сигнала пилы, который подается на инвертирующий вход. Когда напряжение пилы выше модулирующего сигнала — на выходе будет отрицательная часть импульса.

Компаратор

Если же пила подается на неинвертирующий вход компаратора, а модулирующий сигнал — на инвертирующий, то выходные импульсы прямоугольной формы будут иметь положительное значение тогда, когда напряжение пилы выше значения модулирующего сигнала, поданного на инвертирующий вход, а отрицательное — когда напряжение пилы ниже сигнала модулирующего. Пример аналогового формирования ШИМ — микросхема TL494, широко применяющаяся сегодня при построении импульсных блоков питания.

Цифровая ШИМ используются в двоичной цифровой технике. Выходные импульсы также принимают только одно из двух значений (включено или выключено), и средний уровень на выходе приближается к желаемому. Здесь пилообразный сигнал получается благодаря использованию N-битного счетчика.

Цифровые устройства с ШИМ работают также на постоянной частоте, обязательно превосходящей время реакции управляемого устройства, этот подход называется передискретизацией. Между фронтами тактовых импульсов, выход цифрового ШИМ остается стабильным, или на высоком, или на низком уровне, в зависимости от текущего состояния выхода цифрового компаратора, который сравнивает уровни сигналов на счетчике и приближаемый цифровой.

Выход тактуется как последовательность импульсов с состояниями 1 и 0, каждый такт состояние может сменяться или не сменяться на противоположное. Частота импульсов пропорциональна уровню приближаемого сигнала, а единицы, следующие друг за другом могут сформировать один более широкий, более продолжительный импульс.

Получаемые импульсы переменной ширины будут кратны периоду тактования, а частота будет равна 1/2NT, где T – период тактования, N – количество тактов. Здесь достижима более низкая частота по отношению к частоте тактования. Описанная схема цифровой генерации — это однобитная или двухуровневая ШИМ, импульсно-кодированная модуляция ИКМ.

Эта двухуровневая импульсно-кодированная модуляция представляет собой по сути серию импульсов с частотой 1/T, и шириной Т или 0. Для усреднения за больший промежуток времени применяется передискретизация. Высокого качества ШИМ позволяет достичь однобитная импульсно-плотностная модуляция (pulse-density-modulation), называемая также импульсно-частотной модуляцией.

При цифровой широтно-импульсной модуляции прямоугольные подимпульсы, которыми оказывается заполнен период, могут приходиться на любое место в периоде, и тогда на среднем за период значении сигнала сказывается только их количество. Так, если разделить период на 8 частей, то комбинации импульсов 11001100, 11110000, 11000101, 10101010 и т. д. дадут одинаковое среднее значение за период, тем не менее, отдельно стоящие единицы утяжеляют режим работы ключевого транзистора.

ШИМ-контроллер

Корифеи электроники, повествуя о ШИМ, приводят такую аналогию с механикой. Если при помощи двигателя вращать тяжелый маховик, то поскольку двигатель может быть либо включен, либо выключен, то и маховик будет либо раскручиваться и продолжать вращаться, либо станет останавливаться из-за трения, когда двигатель выключен.

Но если двигатель включать на несколько секунд в минуту, то вращение маховика будет поддерживаться, благодаря инерции, на некоторой скорости. И чем дольше продолжительность включения двигателя, тем до более высокой скорости раскрутится маховик. Так и с ШИМ, на выход приходит сигнал включений и выключений (0 и 1), и в результате достигается среднее значение. Проинтегрировав напряжение импульсов по времени, получим площадь под импульсами, и эффект на рабочем органе будет тождественен работе при среднем значении напряжения.

Так работают преобразователи, где переключения происходят тысячи раз в секунду, и частоты достигают единиц мегагерц. Широко распространены специальные ШИМ-контроллеры, служащие для управления балластами энергосберегающих ламп, блоками питания, преобразователями частоты для двигателей и т. д.

Широтно-импульсная модуляция

Отношение полной длительности периода импульса ко времени включения (положительной части импульса) называется скважностью импульса. Так, если время включения составляет 10 мкс, а период длится 100 мкс, то при частоте в 10 кГц, скважность будет равна 10, и пишут, что S = 10. Величина обратная скважности называется коэффициентом заполнения импульса, по-английски Duty cycle, или сокращенно DC.

Так, для приведенного примера DC = 0.1, поскольку 10/100 = 0.1. При широтно-импульсной модуляции, регулируя скважность импульса, то есть варьируя DC, добиваются требуемого среднего значения на выходе электронного или другого электротехнического устройства, например двигателя.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *