Что такое поляризация простыми словами
Перейти к содержимому

Что такое поляризация простыми словами

  • автор:

поляризация диэлектриков

1) смещение электрических зарядов в диэлектрике под действием приложенного электрического поля. Может осуществляться благодаря сдвигу ионов относительно друг друга, деформации электронных оболочек отдельных атомов, молекул, ионов либо ориентации электрических диполей, существовавших в диэлектрике и в отсутствие электрического поля. 2) Электрический дипольный момент единицы объёма диэлектрика.

ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ

ПОЛЯРИЗА́ЦИЯ ДИЭЛЕ́КТРИКОВ,
1) Процесс образования объемного дипольного электрического момента (смещение электрических зарядов) в диэлектрике (см. ДИЭЛЕКТРИКИ) .
Поляризацией диэлектрика называют состояние, характеризующееся наличием электрического момента у любого элемента его объема. Различают поляризацию, возникающую под действием внешнего электрического поля, и спонтанную (самопроизвольную), существующую в отсутствии поля. В некоторых случаях поляризация диэлектриков проявляется под действием механических напряжений. Способность различных материалов поляризоваться в электрическом поле характеризуется относительной диэлектрической проницаемостью (см. ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ) . Осуществляется благодаря сдвигу ионов относительно друг друга, деформации электронных оболочек отдельных атомов, молекул, ионов, либо ориентации электрических диполей, существовавших в диэлектрике и в отсутствие электрического поля. Существует несколько видов поляризации, отличающихся своим механизмом и свойствами.
Электронная поляризация
Представляет собой упругое смещение и деформацию электронных оболочек атомов и ионов. Центр орбиты электрона смещается на расстояние, которое зависит от напряженности поля E и резонансной частоты атома. Время установления электронной поляризации ничтожно мало (около10 -15 с), поэтому электронную поляризацию условно называют мгновенной: запаздывания поляризации по отношению к изменению электрического поля не наблюдается. Электронная поляризация происходит без потерь энергии (как бы упругая деформация), в диэлектрике имеется только емкостная составляющая тока. Поляризуемость частиц при электронной поляризации не зависит от температуры, а диэлектрическая проницаемость уменьшается с повышением температуры в связи с тепловым расширением диэлектрика и уменьшением числа частиц в единице объема.
Ионная поляризация
Характерна для твердых тел с ионным строением и обусловлена смещением упруго связанных ионов на расстояния в пределах кристаллической решетки. Наблюдается в твердых телах с ионной кристаллической решеткой. Смещение токов происходит по малым расстояниям за счет упругой деформации решетки. Смещению ионов под действием поля препятствуют упругие силы химической связи. Смещение двух разноименно заряженных ионов приводит к появлению элементарного электрического момента. Сумма таких элементарных моментов, приходящихся на единицу объема, определяет ионный вклад в поляризованность диэлектрика. С повышением температуры расстояния между ионами вследствие теплового расширения материала увеличиваются. В большинстве случаев это сопровождается ослаблением сил упругой связи и возрастание поляризованности диэлектрика. Время установления ионной поляризации — порядка 10 -13 с.
Ионно-релаксационная поляризация.
Наблюдается в ионных диэлектриках с неплотной упаковкой ионов, например, в неорганических стеклах и в некоторых кристаллических веществах. Ионно-релаксационная поляризация это переброс в твердом диэлектрике на другое место слабо закрепленных в решетке ионов. Это происходит при достаточной тепловой подвижности ионов, когда они отрываются от своего места в решетке и закрепляются в другом, недалеко от своего места. После снятия электрического поля ионы постепенно возвращаются к центрам равновесия, т.е. этот механизм можно отнести к релаксационной поляризации, при которой имеет место необратимое рассеяние энергии. Свойства ионно-релаксационной поляризации близки к свойствам дипольной поляризации.
Дипольная поляризация.
Отличается от электронной и ионной тем, что дипольные молекулы, находящиеся в хаотическом тепловом движении, частично ориентируются под действием поля, что и является причиной поляризации. Возможна, если молекулярные силы не мешают диполям ориентироваться вдоль электрического поля. У симметричных неполярных молекул (H2, O2, N2)под действием электрического поля возникает упругая поляризация. У некоторых несимметричных полярных молекул (CO, HCl, NH) центры зарядов сдвинуты друг относительно друга, так что такая молекула имеет собственный постоянный момент. Так как векторы дипольных моментов в отсутствии электрического поля ориентированы хаотически, суммарный дипольный момент диэлектрика равен нулю. Внешнее электрическое поле стремится ориентировать дипольные моменты молекул параллельно вектору Е (тепловое движение этому противодействует), так что вещество в целом приобретает отличный от нуля дипольный момент. Такая поляризуемость называется ориентационной. С увеличение температуры молекулярные силы ослабляются, что должно усиливать поляризацию, однако в то же время возрастает энергия теплового движения молекул, что уменьшает ориентирующее влияние поля. Поэтому температурное изменение диэлектрической проницаемости при дипольно-релаксационной поляризации характеризуется наличием максимума. Такая поляризация свойственна полярным жидкостям, может наблюдаться и в твердых полярных органических веществах. Но в этом случае поляризация обычно обусловлена уже поворотом не самой молекулы, а имеющихся в ней полярных радикалов по отношению к молекуле. Такую поляризацию называют дипольно-радикальной (например, в целлюлозе (см. ЦЕЛЛЮЛОЗА (полисахарид)) полярность объясняется наличием гидроксильных групп –ОН и кислорода). В кристаллах с молекулярной решеткой и слабыми ван-дер-ваальсовыми связями возможна ориентация и более крупных частиц.
Миграционная поляризация
Имеет место в двух- и многослойных диэлектриках, обладающих разными значениями диэлектрической проницаемости. Характеризуется большой инертностью и потерями. В граничных слоях слоистых материалов и в приэлектродных слоях может быть накопление зарядов медленно движущихся ионов, что создает эффект медленно движущейся поляризации.
Остаточная поляризация
Характерна для веществ, называемых электретами (см. ЭЛЕКТРЕТЫ) . Эти вещества способны сохранять поляризованное состояние и при снятии электрического поля.
2). Электрический дипольный момент единицы объема диэлектрика.

Энциклопедический словарь . 2009 .

  • поляризация волн
  • поляризация света

Как простыми словами обьяснить что такое «Поляризация света»?

Каким-либо образом упорядоченное колебание светового вектора.
Ничего сложного в этом определении нет.

Вектор напряжённости должен колебаться не как попало, а в какой-то плоскости, например.

Доходчивые рисунки в источнике.

Источник: http://ru.wikipedia.org/wiki/Поляризация_света
Остальные ответы

Можно поставить иллюстрацию: через длинную узкую вертикальную щель пропустить веревку и пустить по ней волну.. .
так вот в вертикальной плоскости волна будет с двух сторон, а если пустить горизонтально, то с одной.

Направление поля в волне.

Простым языком. помню свой учебник физики, автор перышкин. класс 11, вроде, там про поляризацию света очень хорошо написано, поищи в инете.

Поляризация как процесс-это упорядочение колебаний напряженности электрической составляющей электромагнитного поля в определенном направлении волны каким то образом. Чаще всего поляризация обычного света происходит на поверхности диэлектриков. Связано это с тем когда молекула диэлектрика поглощает електромагнитную волну и переходит в возбужденное состояние излучает она поглощенную энергию уже со строго определенной ориентацие вектора напряженности электрического поля в пространстве потому что сама он жестко закреплена в кристаллической структуре диелектрического вещества и просто не может излучать по другому. Поэтому свет отраженный от диэлектриков уже в поляризован-в этом можно убедиться если взять поляризующую пленку (напрмер ЖК-дисплей от калькулятора) и глядя сквозь нее на блики от диэлектриков крутить ее. Под разными углами яркость бликов будет разная. Если же смотреть через такой поляризатор на блики от металлов то их яруость не будет зависеть от угла поворота пленки сквозь котороую смотришь потому что приотражении от металлов поляризации не происходит. В металлах волны поглощают свободные электроны, а так как он свободно движутся и не зафиксированы в решенке то и излучать могут в любых направлениях.

Поляризация света для «чайников»: определение, суть явления и сущность

сущность явления поляризации света

В нашем блоге уже можно найти статьи про преломление, дисперсию и дифракцию света. Теперь пришло время поговорить о том, в чем заключается сущность поляризации света.

В самом общем смысле правильнее говорить о поляризации волн. Поляризация света, как явление, представляет собой частный случай поляризации волны. Ведь свет представляет собой электромагнитное излучение в диапазоне, воспринимаемом глазами человека.

Что такое поляризация света

Поляризация – это характеристика поперечных волн. Она описывает положение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

Если этой темы не было на лекциях в университете, то вы, вероятно, спросите: что это за колеблющаяся величина и какому направлению она перпендикулярна?

Как выглядит распространение света, если посмотреть на этот вопрос с точки зрения физики? Как, где и что колеблется, и куда при этом летит?

Электромагнитная волна

Свет – это электромагнитная волна, которая характеризуется векторами напряженности электрического поля E и вектором напряженности магнитного поля Н. Кстати, интересные факты о природе света можно узнать из нашей статьи.

Согласно теории Максвелла, световые волны поперечны. Это значит, что векторы E и H взаимно перпендикулярны и колеблются перпендикулярно вектору скорости распространения волны.

Поляризация наблюдается только на поперечных волнах.

Для описания поляризации света достаточно знать положение только одного из векторов. Обычно для этого рассматривается вектор E.

Если направления колебаний светового вектора каким-то образом упорядочены, свет называется поляризованным.

Возьмем свет на рисунке, который приведен выше. Он, безусловно, поляризован, так как вектор E колеблется в одной плоскости.

Если же вектор E колеблется в разных плоскостях с одинаковой вероятностью, то такой свет называется естественным.

Поляризация света по определению – это выделение из естественного света лучей с определенной ориентацией электрического вектора.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Откуда берется поляризованный свет?

Свет, который мы видим вокруг себя, чаще всего неполяризован. Свет от лампочек, солнечный свет – это свет, в котором вектор напряженности колеблется во всех возможных направлениях. Но если вам по роду деятельности приходится весь день смотреть в ЖК-монитор, знайте: вы видите поляризованный свет.

Чтобы наблюдать явление поляризации света, нужно пропустить естественный свет через анизотропную среду, которая называется поляризатором и «отсекает» ненужные направления колебаний, оставляя какое-то одно.

Анизотропная среда – среда, имеющая разные свойства в зависимости от направления внутри этой среды.

В качестве поляризаторов используются кристаллы. Один из природных кристаллов, часто и давно применяемых в опытах по изучению поляризации света — турмалин.

Еще один способ получения поляризованного света — отражение от диэлектрика. Когда свет падает на границу раздела двух сред, луч разделяется на отраженный и преломленный. При этом лучи являются частично поляризованными, а степень их поляризации зависит от угла падения.

Связь между углом падения и степенью поляризации света выражается законом Брюстера.

Когда свет падает на границу раздела под углом, тангенс которого равняется относительному показателю преломления двух сред, отраженный луч является линейно поляризованным, а преломленный луч поляризован частично с преобладанием колебаний, лежащих в плоскости падения луча.

Линейно поляризованный свет — свет, который поляризован так, что вектор E колеблется только в одной определенной плоскости.

Практическое применение явления поляризации света

Поляризация света – не просто явление, которое интересно изучать. Оно широко применяется на практике.

Пример, с которым знакомы почти все – 3D-кинематограф. Еще один пример – поляризационные очки, в которых не видно бликов солнца на воде, а свет фар встречных машин не слепит водителя. Поляризационные фильтры применяются в фототехнике, а поляризация волн используется для передачи сигналов между антеннами космических аппаратов.

Поляризация — не самое сложное для понимания природное явление. Хотя если копнуть глубоко и начать основательно разбираться с физическими законами, которым она подчиняется, могут возникнуть сложности.

Чтобы не терять время и преодолеть трудности максимально быстро, обратитесь за советом и помощью к нашим авторам. Мы поможем выполнить реферат, лабораторную работу, решить контрольные задания на тему «поляризация света».

Мы поможем сдать на отлично и без пересдач

  • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
  • Курсовая работа от 5 дней / от 2160 р. Узнать стоимость
  • Реферат от 1 дня / от 840 р. Узнать стоимость

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Поляризация света простыми словами: что это такое, типы, примеры

Если свободный конец веревки, привязанной к устойчивому объекту, регулярно «помахивать», то на ней образуется поперечная волна. Она может быть колеблющейся в одной плоскости — вертикальной, горизонтальной или под определенным углом к горизонтали. Такая волна называется поляризованной. Если веревка вибрирует неравномерно, в разных плоскостях, через нее будет распространяться неполяризованная волна. Свет, который является электромагнитной волной, ведет себя подобно волне на веревке. Это свойство используется, например, в 3D-очках для различения изображения для левого и правого глаза.

Поперечная волна называется плоскополяризованной, eсли колебания во всех ее точках происходят только в одной плоскости.

Применительно к свету термин поляризация ввел в 1704-1706 г. Ньютон.

Поляризованная световая волна

Свет — это волна электромагнитного излучения, т.е. возмущение электрического и магнитного поля, перемещающегося в пространстве. Для простоты мы будем говорить о монохроматическом свете, то есть о гармонической волне с определенной частотой и длиной волны.

Электромагнитная волна — это поперечная волна. Это означает, что его электрическое поле E всегда перпендикулярно (колеблется перпендикулярно) направлению распространения волны. Мы говорим, что волна поляризована, если электрическое поле в любой точке имеет одинаковое направление. Пример поляризованной волны показан на рисунке 1.

Итак, поляризация света описывает направление колебаний вектора электрического поля.

Поляризованная волна (от англ. polarized wave) — волна, электрическое поле которой колеблется в одной плоскости.

Поляризованная волна

Волна, показанная на рис. 1, колеблется в вертикальном направлении. Направление колебаний поляризованной волны называется направлением поляризации. Это направление может быть любым — волна может колебаться вертикально (рис. 2. b), горизонтально (рис. 2. a) или под определенным углом (рис. 2. c).

Волны с различными направлениями поляризации

Неполяризованная волна

Не все волны поляризованы. В некоторых волнах направление электрического поля хаотично меняется от места к месту. Такая волна называется неполяризованной (рис. 3).

Неполяризованная волна

Такова природа света, излучаемого нагретым металлом, например, вольфрамовой нитью обычной лампочки. Свет, излучаемый светящимся атомарным газом, например, неоновой лампой (светятся атомы неона) или пламенем газовой горелки с соляным раствором (светятся атомы натрия), также неполяризован.

Используя последний пример, мы объясним, почему эти волны неполяризованы. В результате нагревания тела атомы начинают вибрировать и светиться, чтобы избавиться от избытка энергии. Направления колебаний этих атомов случайны, и поэтому направление электрического поля излучаемой электромагнитной волны также изменяется случайным образом. На рис. 4 мы видим три атома, которые являются источником волн с разной поляризацией. Результатом их объединения является неполяризованная волна.

Колеблющиеся атомы являются источником волн с различной поляризацией

Разложение любой волны на две поляризованные волны

Каждая волна может быть разложена на две поляризованные волны с произвольно выбранными перпендикулярными направлениями электрического поля. Это следует из простого факта: каждый вектор на плоскости может быть представлен как сумма двух векторов, перпендикулярных друг другу. Это относится как к поляризованным, так и к неполяризованным волнам.

Такое разложение поляризованной волны с «любым» направлением поляризации на волну с вертикальным электрическим полем (зеленая волна) и горизонтальным электрическим полем (красная волна) показано на рис. 5.

Разложение поляризованной волны

Поляризатор

Поляризатор — это устройство, которое из падающего неполяризованного света пропускает только те электромагнитные волны, электрический вектор которых лежит в направлении, заданном поляризатором.

Система, называемая поляризатором, работает следующим образом. У него есть определенная направленность. На рис. 6 это горизонтальное направление.

Через поляризатор проходит только составляющая напряженности электрического поля

  1. Если на поляризатор падает поляризованная волна, в которой направление электрического поля совпадает с направлением выделенной волны, то она проходит через него без изменения амплитуды (рис. 6. a).
  2. Если на него падает поляризованная волна, в которой направление электрического поля перпендикулярно выделенному направлению, то она вообще не проходит (рис. 6. b).
  3. Если на него падает поляризованная волна, у которой направление поляризации образует ненулевой угол с выделяемым направлением, то проходит только ее составляющая вдоль выделяемого направления (рис. 6. c и 6. d). Пройдя через него, волна, очевидно, становится поляризованной.
  4. Если на поляризатор падает неполяризованная волна, то через него проходит только ее составляющая вдоль выделенного направления. Очевидно, что это поляризованная волна. Таким образом, поляризатор преобразует неполяризованную волну в поляризованную.

В настоящее время для поляризации света обычно используются специальные пластиковые пленки, называемые поляризационными фильтрами. Такие пленки используются в компьютерных мониторах.

Поляризационный фильтр (от англ. polarizing filter) — широко известен как поляроид; прозрачная пластина или пленка, которая действует как поляризатор, т.е. устройство, которое из падающего неполяризованного света пропускает только те электромагнитные волны, электрический вектор которых лежит в направлении, указанном поляризатором.

Частично поляризованный свет

Есть и другая возможность. Электрические поля световой волны принимают все возможные направления, но вероятность их возникновения неодинакова. Для определенного направления он наибольший, а для перпендикулярного ему направления — наименьший. Когда мы исследуем такой свет с помощью вращающегося поляризатора, мы получаем результат, показанный на рис. 7. Мы говорим о таком свете, что он частично поляризован.

Частично поляризованный свет

Поляризация света при отражении

В повседневной жизни мы постоянно наблюдаем прохождение света через стеклопакеты. Мы видим, что обычно свет попадает в стекло и отражается от его поверхности одновременно. Однако оказалось, что при правильном выборе источника света и угла наклона свет может вообще не отражаться. Это определяется поляризацией световой волны.

Предположим, что луч поляризованного света падает на поверхность двух сред под углом α ≠ 0⁰. Плоскость, содержащая падающий луч и нормаль, называется плоскостью падения. На рисунке 8 эта плоскость обозначена синим цветом.

Когда мы рассматриваем падение поляризованного света на поверхность, то должны различать два основных случая. Они показаны на рис. 8. В обоих случаях луч света движется по прямой линии x:

Волна, падающая на поверхность

  • a. Электрическое поле (красные векторы) электромагнитной волны перпендикулярно плоскости падения (синяя плоскость),
  • b. Электрическое поле E гармонической электромагнитной волны параллельно плоскости падения (красные векторы лежат на синей плоскости). Затем это поле образует угол α с границей среды. Этот угол также лежит в плоскости падения (синяя плоскость).

Было исследовано, как зависит величина электрического поля отраженного света от угла падения для вещества с показателем преломления n в этих ситуациях. На рис. 9 показано отношение величины амплитуды электрического поля отраженного света к амплитуде падающего света E0 при прохождении света из воздуха в среду с показателем преломления n=1,5 в зависимости от угла падения. Таким материалом является, например, стекло.

Отношение амплитуды электрического поля

a. Синяя кривая соответствует поляризации (a) на рис. 8. Для перпендикулярного падения, т.е. α = 0⁰, отношение E/E0 равно 0,2. По мере увеличения угла α увеличивается величина E/E0. Это означает, что все большая часть падающего света отражается, а не преломляется. Отношение E/E0 достигает 1 при значениях угла α, приближающихся к 90°. Тогда весь свет отражается.

b. Красная кривая соответствует поляризации (b) на рис. 8. Для α = 0⁰, т.е. света, падающего перпендикулярно поверхности, отношение E/E0 равно 0,2. Тогда нет никакой разницы между случаем (a) и случаем (b). По мере увеличения угла α величина E/E0 первоначально вообще не увеличивается, а наоборот уменьшается. Свет отражается все меньше и меньше. Величина E/E0 достигает нуля для определенного угла. Этот угол αB называется углом Брюстера. Он зависит от показателя преломления вещества. Для n = 1,5 он равен αB = 56,3°. Для углов, превышающих αB, отношение E/E0 увеличивается и приближается к единице при значениях угла α, приближающихся к 90°. Тогда весь свет ведет себя как в случае (a).

Угол Брюстера удовлетворяет простому соотношению tg αB = n .

Полная поляризация света при отражении

Рассмотрим далее, что произойдет, если неполяризованный свет, например, от обычной лампочки, будет падать на стекло под углом Брюстера. Такая волна может быть разложена на две поляризованные волны с перпендикулярными направлениями электрического поля, одна типа (a) и другая типа (b).

Каждая волна может быть разложена на две поляризованные волны с произвольно выбранными перпендикулярными направлениями электрического поля. Это вытекает из простого факта: каждый вектор на плоскости может быть представлен как сумма двух векторов, перпендикулярных друг другу (рис. 10). Это справедливо как для поляризованной, так и для неполяризованной волны.

Разложение вектора электрического поля на два перпендикулярных направления

В случае неполяризованной волны, когда мы разложим ее на составляющие, окажется, что волна (a) будет частично отражена (синяя кривая на рис. 9.), а волна (b) не будет отражена вообще, но полностью проникнет в стекло (красная кривая на рис. 9.). Таким образом, отраженный свет будет содержать только один компонент, т.е. он будет полностью поляризован, с направлением электрического поля, как на рис. 2a.

Частичная поляризация света при отражении

Для всех углов α, отличных от αB, в отраженном свете присутствуют обе составляющие: (a) и (b). За исключением α = 0⁰ и α до 90°, компонент (a) в среднем имеет большее значение, чем компонент (b). При вращении поляризатора наблюдаемая интенсивность света изменяется. Для некоторых углов это самый высокий угол, а для других — самый низкий. Однако полного исчезновения интенсивности света не наблюдается. График интенсивности света в зависимости от угла, на который был повернут поляризатор, показан на рис. 11.

График интенсивности света в зависимости от угла, под которым установлен поляризатор

Мы называем такой свет частично поляризованным.

Типы поляризации

Поляризация подразделяется на различные типы в зависимости от того, как ведут себя направление колебаний электрического поля и его величина.

  • Линейная поляризация: направление колебаний электрического поля постоянно, но его величина периодически меняется.
  • Круговая поляризация: здесь величина электрического поля постоянна, но направление его колебаний меняется с фиксированной угловой скоростью.
  • Эллиптическая поляризация: при этом типе поляризации изменяется как величина электрического поля, так и направление его колебаний.

Название типов поляризации происходит из того факта, что при взгляде спереди вектор электрического поля имеет следующие геометрические формы (см. рисунок 12).

Типы поляризации

При линейной поляризации, например, вектор электрического поля движется вдоль линии, тогда как при круговой поляризации он движется вдоль окружности.

Примеры использования поляризации света

Наконец, мы приводим краткий список областей, в которых поляризация света имеет решающее значение. К ним относятся

  • жидкокристаллические дисплеи (также называемые ЖК-дисплеи),
  • солнцезащитные очки,
  • 3D фильмы,
  • анализ механических напряжений в прозрачных пластмассах,
  • в фотографии.

Список использованной литературы

  1. Жилко В. В., Маркович Я. Г. Физика. 11 класс. – 2011.
  2. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник.
  3. Касьянов В. А. Физика, 11 класс. – 2004.
  4. Какичашвили Ш. Д. Поляризационная голография / отв. ред. Ю. Н. Денисюк. — Л.: «Наука», 1989. — 141 с.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *